Product Information Sheet

MarkerGene™
Fluorescent Cellulase Assay Kit

Product M1245
PROTOCOL SUMMARY

Dilute sample material in Reaction Buffer

Dilute enzyme in Reaction Buffer

Dilute Reference Standard in Reaction Buffer

Plate samples, enzyme and reference standard solutions in 96 well plate

Add 0.5mM substrate reagent

Read fluorescence

Generate calibration curve to determine original enzyme concentration
NOTE: The following information is given as a viable methodology for use of MarkerGene™ Fluorescent Cellulase Assay Kit (Product M1245). The user may determine their own best conditions for use dependent on the specific conditions present in their experiment.

I. OVERVIEW

Cellulases are a family of enzymes that include β-Glucosidases, endoglucanases, and exoglucanases. These enzymes cleave the β-1,4-D-glycosidic bonds that link the glucose units comprising cellulose. In addition to being produced by plants, cellulase activity is found in many fungi and bacteria, including some plant pathogens. Most animal cells are not known to produce cellulase; cellulolytic activity is often carried out in animals by symbionts. However, recent evidence does suggest cellulase production in some animals, such as insects and arthropods. The study of cellulase activity has many applications in plant molecular biology, agriculture, and manufacturing. Cellulase is also becoming important in the development of alternative fuel sources, as glucose obtained from cellulose hydrolysis is easily fermented into ethanol. Activity of most cellulases can be monitored using our long wavelength fluorescent substrate, Resorufin Cellobioside (Product M1238), contained in the kit. Upon cleavage, the fluorescent compound, Resorufin (Product M0202) is released and activity measurements are easily obtained in a microtiter plate based assay format. The kit contains enough substrate for 200 assays and control experiments (100 μL reaction volume) and also contains reference standards and a detailed protocol for use. See the references below for more information and applications.
II. MATERIALS

A.) **Substrate Reagent:** 5mM Resorufin Cellobioside in Dimethyl sulfoxide (DMSO). Dilute to 0.5mM for use in the assay protocol below.

B.) **Reference Standard:** 5mM Resorufin in Dimethyl sulfoxide (DMSO). Dilute to desired concentration using supplied DMSO and reaction buffer.

C.) **Reaction Buffer**

D.) **Stop Buffer**

E.) **Dimethyl Sulfoxide**

Storage and Handling: The substrate reagent and reference standard included in this kit should be kept cold when not in use and stored at -20°C. Protect solutions of the substrate reagent and reference standard from light.

III. ENZYME ASSAY

It is recommended that a calibration curve be generated using concentrations of the Reference Standard in a range from 0 to 50uM for instrument calibration. Several concentrations of the Reference Standard\(^3\) can be made by dilution in DMSO\(^5\).

In addition, purified enzyme assays should be performed using several enzyme concentrations in the approximate or estimated range of the enzyme concentration expected for the unknown sample. To normalize data, each enzyme reaction should be subtracted from a blank (no enzyme) sample.

1.) It is recommended that samples to be assayed are diluted at least 1:1 in Reaction Buffer\(^1\). Enzyme can be extracted from solid material (such as plant tissue) by freezing in liquid nitrogen and grinding in a mortar, then suspending the resulting powder in Reaction Buffer\(^1\) (see Figure 1 below). Presence of solid material in sample may affect fluorescence readings. Solid materials should be removed by centrifugation prior to measurement if possible. Keep samples in an ice bath until needed.

2.) Purified enzyme concentrations should be prepared fresh by diluting enzyme in Reaction Buffer\(^1\). Keep samples in an ice bath until needed.
3.) To a 96-well microtiter plate, add samples and purified enzyme solutions to wells in triplicate (50 μL/well). Also include in triplicate wells for blanks and reference standards (50 μL reaction buffer/well).

4.) Prepare reference standard solutions by first diluting provided 5mM Reference Standard solution to 10X the desired concentration in DMSO. Dilute 10X DMSO solutions 1:10 in Reaction Buffer to reach final concentration. Mix solutions and let stand for 5 minutes prior to use. To wells to be used as reference standards, add prepared reference standard solution. (100 μL) (see note (2) below). If a standard curve is desired to produce kinetic data, reference standard solutions should be prepared at several concentrations and added to wells. Concentration of standard may vary depending on enzyme concentration or sensitivity of reader.

NOTE: Self-quenching begins to occur at a concentration of 50 μM Resorufin in 1:10 DMSO:Reaction Buffer. Reference standards should be kept below this concentration.

5.) Prepare a 0.5mM substrate reagent solution by diluting 5mM Substrate Reagent (100 μL) in Reaction Buffer (900 μL). Prepare this solution just prior to performing the assay (see Note (1) below). Add 0.5mM substrate reagent solution (50 μL/well) to all wells, except those containing reference standard.

6.) Read fluorescence (Ex/Em = 571/585 nm see Note (4) below) in a microtiter plate reader, using appropriate filters. Use the wells containing reference standard to optimize reading conditions. If kinetic data is desired, readings may be taken beginning immediately after addition of the substrate reagent, and at several defined time points thereafter. If only an endpoint reading is needed, plate should be incubated at room temperature for the desired time, and fluorescence recorded after the addition of Stop Buffer (30 μL/well).

7.) Average the readings of duplicate samples. Subtract fluorescence of blanks from that of each sample in order to normalize data. (See Note (1) below).

8.) Generate a calibration curve using purified enzyme samples by plotting normalized fluorescence vs. time (log-log).

9.) Using the calibration curve generated in step 8, determine the activity (concentration) of the enzyme in the sample, and extrapolate this data to determine the original enzyme concentration.
IV. NOTES

Note (1.) 0.5mM substrate reagent should be prepared just prior to performing the assay to prevent nonspecific hydrolysis of substrate. A small amount of nonspecific hydrolysis may occur over time if assays are performed over a long period (several hours). Potential hydrolysis may necessitate the need for blank wells as recommended in the assay protocol.

Note (2.) In addition to generating kinetic data, use of reference standard wells may be useful in optimizing reading conditions of the microtiter plate reader.

Note (3.) In the absence of a fluorometer the assay may also be quantified by monitoring the increase in absorbance at 570nm.

Note (4.) The wavelengths listed are the peak Em/Ex wavelengths. Since the Stokes shift is so narrow, some instrument settings may cause overlap, as indicated by very high background readings across the entire plate especially notable in the blank wells. In this instance the wavelength settings can be adjusted to a shorter excitation wavelength, e.g. Em/Ex 550nm/585nm or 530nm/585nm.

Cellulase Assay of Arabidopsis thaliana using Resorufin Cellobioside (M1238)

Figure 1: Flowering buds from two mature Arabidopsis thaliana plants (strain CS-20) were removed (0.09g tissue) and ground to a fine powder in liquid nitrogen. Powder was suspended in Reaction Buffer 1 (200 μL) and centrifuged (13000 rpm) for 10 minutes. Supernatant was collected and added in triplicate (50μL) to wells on a 96-well microtiter plate (clear, flat bottom). A 0.5mM substrate solution was prepared by diluting Substrate Reagent 2:1:10 in Reaction Buffer 1 and added to wells (50 μL/well). Fluorescence was recorded using a Perkin-Elmer HTS 7000 BioAssay Reader, with 550nm excitation filter and 595nm emission filter. Fluorescence readings were taken at 3-minute intervals for 120 minutes. Fluorescence values of blank (50 μL Substrate Reagent added to 50 μL Reaction Buffer) were subtracted at each time point.
Figure 2: Several dilutions of purified cellulase from *Trichoderma reesei* (FLUKA 22173) were prepared in Reaction Buffer. Each preparation was added in triplicate (50μL) to wells on a 96-well microtiter plate (clear, flat bottom). A 0.5mM substrate solution was prepared by diluting Substrate Reagent 1:10 in Reaction Buffer and added to wells (50 μL/well). Fluorescence was recorded using a Perkin-Elmer HTS 7000 BioAssay Reader, with 550nm excitation filter and 595nm emission filter. Fluorescence readings were taken at 1-minute intervals for 30 minutes. Fluorescence values of blank (50 μL substrate reagent added to 50 μL reaction buffer) were subtracted at each time point.

Figure 3: Resorufin Excitation (black) and Emission (blue) Curves (in pH 8 buffer).
FREQUENTLY ASKED QUESTIONS

1. We are uncertain what the “blanks” mentioned in the product sheet should contain. Please advise.

Blank wells are the wells that contain no enzyme or reference standard. You may add 50ul reaction buffer to the blank wells.

2. I’m not certain about the use of the data from the reference standard solutions.

The reference standard solution included in the kit is for a) calibrating your reader, such as gain setting, filter setting etc.; b) determining the linear range of resorufin, which is the product of the cellulase assay. All assays should generate product which is in the linear detection range by fluorometer or fluorescence plate reader.

3. Our sample contains cellulases that are present in quite low amounts. Will this kit work for us?

Fluorescence is probably the most sensitive assay available. It is from 2 to 3 orders of magnitude more sensitive than other chromogenic techniques. We were able to measure about 50 microunits/mL without any difficulties.

Contact and Support

For questions or comments on this or any product from Marker Gene Technologies, Inc., you may contact us by phone or via our website. We welcome customer feedback and we make every effort to improve our products based on input from our clients.

To ask a question or make a comment or suggestion, you can call us at 541-342-3760 or fax to 541-342-1960.

For more information on our products and services, please visit our website at www.markergene.com, where you can find:

- Secure online ordering
- Product Information
- MGT Scientific Newsletters
- Corporate Information
- Custom Synthesis Info

We want to thank you for your purchase and hope that you will continue to order from Marker Gene Technologies, Inc.